

HXSim Simulation Software GETTING STARTED

Brief

Improvement of Latest Version HXSim v3.3

✓ Add 5 kinds of new refrigerant, including R404A, R407C, R134a, Water, CO₂.

Re	frigerant		2 OI		X
	Refrigerant	R22 💌			
	Mass flow rate	R134a R22 1 D290		Properties solver FCP-(Fast Calc -	
	-Specify inlet condition	R32 R404A			
	Condenser	R407C R410A			
	C Condensing Te	Water CO2	7.15 C	Discharge 7 C	

 Add different heat exchanger roles, including condenser, evaporator and water coil.

Condenser				
C Condensing Temp. (Gas_	^{7.15} C	Discharge Temperature	7	С
Evaporator				
🔽 Set Outlet Temperature		🗆 Set Inlet Ten	nperature	
● Evaporation Temp.(Gas) ▼	7 C	Quality	0.19	
C Evaporation Temp.(Gas) -	⁷ c	Condensing Tem	p.(Gas) 💌	46.28 C
		Pre-Valve Temperature	32.327	С
C Evaporation Pressure	⁹⁹⁴ kPa	Pre-Valve Pressure	2800	kPa
		Pre-Valve Temperature	32.327	С
Vater Coil				
C Pressure	⁹⁹⁴ kPa	Inlet Temperature	7	С
🗖 Set Outlet Temperature		Outlet Temperature	0	С
	(ЭК		Cancel

Improvement of Latest Version HXSim v3.3

✓ Add 5 kinds of new 5mm tubes and 12 kinds of 5mm fins. And switch to database.

vailable Fin Pat	ttern in Manufacturer			
ID	Tube Diameter	Pt	PI	Fin Type
1	5	19.05	16.5	Louver
2	5	19.05	16.5	Wavy
3	5	19.05	16.5	Sine
4	7	19.05	16.5	Slit
5	7	19.05	16.5	Wavy
6	7	21	12.7	Louver
7	7	21	18.2	Wavy
8	7	21	18.2	Slit
9	7	25	12.5	Louver +

✓ Optimize the algorithm to make calculation faster. And update the graphical display to show the different temperature.

Installation and Registration

- ✓ Run HXSim.msi, the following dialog will pop out for register as shown in Fig.1. Send the registered ID via email to <u>yyli@craheta.org</u>, you will get the registered code within 1-2 days.
- ✓ Input the registered code as Fig.2. Click the button "Register", a dialog of "Succeed to login" will pop out to finish the installation.

Main Menu and Toolbar

✓ General data input window

General data		×
Block Number	1	Add
	Ok	Cancel

✓ Refrigerant status input window

😭 🞏 General Data Edit Block	• 🖺 123 🗞 🗷 Ref	Air 🔸	
Refrigerant			
Air	efrigerant		×
Edit Joints Reverse Refrigerant Flow Direction Reverse Wind Direction	Refrigeront R410A Moss flow rate 36 kg/h	Properties solver FCP-(FastCalc)	2
	Condenser Condensing Temp. (Gai _ 7.15 C Evaporator	Discharge Temperature 7 C	
	Evaporation Temp (Gas) C Evaporation Temp (Gas) C Evaporation Temp (Gas) C	Condensing Temp (Gas)	3.28 C
	C Evaporation Pressure 994 kPa	Pre-Valve Temperature 32.327 C Pre-Valve Pressure 2800 kPa Pre-Valve 32.327 C	3
	-Water Coil C Pressure 994 kPa	Inlet Temperature 7 C	
	Set Outlet Temperature	Outlet Temperature 10 C	ancel

$\checkmark\,$ Inlet airflow input window

🁙 NewHX - Hea	t Exchanger Simu	lation								_			×
File Edit Input	Simulation Res	ult Vie	v Help										
🗎 📽 🖬 👘 Ge	eneral Data												
Ec	lit Block	_											_
Re	efrigerant	Ir	nlet air									×	
Ai	r		Block 1										
Ec	lit Joints		Velocity Dr	y-bulb t	empera	ture W	'et-bulb te	empera	ture P	ressure			
Re	everse the Directi	on in T	-Set value	s									
Re	everse the Directi	on of V	Get v Set v	alues of	f the sel	ected ce	ells						
						0 Uni	t:(m/s)			Update			
			C Sata	orago	air flow	rato			_				
			C Seta	verage	air now	n Uni	:(m3/h)			Undata	1		
									_	opuare	,		
			Column	CV1	CV2	CV3					^		
	Ai	r flow	1	1.000	1.000	1.000							
		-	2	1.000	1.000	1.000							
			3	1.000	1.000	1.000							
			4	1.000	1.000	1.000							
			5	1.000	1.000	1.000							
			6	1.000	1.000	1.000							
			8	1.000	1.000	1.000							
			9	1.000	1.000	1.000							
			10	1.000	1.000	1.000							
			11	1.000	1.000	1.000							
			12	1.000	1.000	1.000					~		
									ОК		Cance	I	
Input Air data								View	port a	angle:0	and heig	ght B	loc //

 $\checkmark\,$ Heat exchanger dimension input window

Input >	< Input X
Block1	Block1
- Fin	Fin
Fin Info ID=6,φ7.00, Pt=21.00, Pt=12.7 Fins	Fin Info ID=6, φ7.00, Pt=21.00, PI=12.7 Fins
Fin type LouverFin 👻 Material: Aluminum 💌	Fin type LouverFin 👻 Material: Aluminum 💌
Fin pitch 1.8 mm Thickness: 0.105 mm 💌	Fin pitch 1.8 mm Thickness: 0.105 mm 💌
Continuous fin	Continuous fin C Separated fin
Block type Holes 20 Rows 2	Block type Ltype Holes 20 Rows 2
Tube Arrangement Staggered-aAa Tube Type Height 420 mm Depth 25.4 mm	Tube Arrangement Staggered-aAa ▼ Tube Type Height 420 mm Depth 25.4 mm
Set sub block	Set sub block
Relative height to 0 mm Relative angle to 0 main block 0	Relative height to 0 mm Relative angle to 0 main block 0
Air Flow Direction of Air Flow From Right to Left	Air Flow Direction of Air Flow From Right to Left
Section Length 500 mm Control volume number 3	First Section Length 500 mm Control volume number 3 Second section
	Inner 100 mm Input Style Length of Each Projection ? Angle 90 o Control volume number 3 3
	Third section Length 200 mm Control volume number
Ok Cancel	OK Cancel
(a) I type	(b)L type↩

✓ Tube structure input window

Input Block1 - Fin -Fin Info No.13, 97.00, Pt=21.00, PI=12.7 Fins Fin type Material: • LouverFin Ŧ Aluminum Fin pitch 1.8 mm Thickness: 0.105 mm • Tubes × separated fin -Set values of the selected tubes Rows 2 Tube type Specify tube type Grooved Tube Type Row Column Туре Name Below Space (mm) 25.4 mm No.6, φ5.00×0.23 1 1 Grooved 2 No.6, *\ophieved* 5.00×0.23 21.00 dinates to 1 Grooved No.6, φ5.00×0.23 1 3 Grooved 21.00 ive angle to Π block 1 4 No.6, φ5.00×0.23 21.00 Grooved No.6, *\ophieved* 5.00×0.23 1 5 Grooved 21.00 n Right to Left • 1 No.6, φ5.00×0.23 21.00 6 Grooved 1 7 No.6, φ5.00×0.23 21.00 Grooved 1 8 Grooved No.6, φ5.00×0.23 21.00 number 3 1 9 Grooved No.6, φ5.00×0.23 21.00 No.6, φ5.00×0.23 1 10 Grooved 21.00 No.6, φ5.00×0.23 1 11 Grooved 21.00 Grooved No.6, φ5.00×0.23 1 12 21.00 ОK Cancel Ok Cancel

✓ Fin type input window

	put			
	Block1			
	- Fin			
	Fin Info No.1	3,φ7.00, Pt=21.00, Pl	=12.7	Fins
	Fin type Lour	verFin 🔻	Material:	Aluminum 🔻
	Fin nitch		Thicknes:	0.105 mm
	- in prosi	Continuous fin	C Soperatod	10.103 mm
n Database		2100001015101		×
Selected Tube Index	lo.6, φ5.00, Pt=21.00, P	Pl=10.90 Sp	ecify Tube Diameter	All 👻
Available Fin Pattern in N	1anufacturer			
				^
NO	Tube Diameter	Pt	PI	Fin Type
1	3	13.3	16	Plain
2	3	19	18	Plain
3	5	19.5	11.6	Slit
4	5	17.5	9.52	Slit
5	5	14	10	Slit
6	5	21	10.9	Louver
7	5	19	13.6	Louver
9	5	19.5	11.6	Slit
-	-	19.5	11.6	Louver Y
10	15	10.0		
10 <	5	10.0		>
10	5 Edit Database	100	Selected	CANCEL

		Edit EinDataha	specity tube bidilieter [All	· ·			
ailable Fin Pattern ir	Manufacturer		20				
ю	Tube Diameter		Add New Fin		De	ete Selected Fin	
1	3	-	T D			e	
2	3	NO	Tube Diameter	Pt	м	Fin Type	(Wavy)A
3	5	1	3	13.3	16	Plain	0
4	5	2	3	19	18	Plain	0
5	5	3	5	19.5	11.6	Slit	0
6	5	4	5	17.5	9.52	Slit	0
7	5	5 🛒	5	14	10	Slit	0
9	5	6	5	21	10.9	Louver	0
10	5	7	5	19	13.6	Louver	0
·		9	5	19.5	11.6	Slit	0
	Edit Database	10	5	19.5	11.6	Louver	0
		11	5	19.05	16.5	Louver	0
		12	5	19.05	16.5	Wavy	16.07
		12	-	21	107		· ·

Connect Tubes

Run a Simulation

Simulation Results

✓ General results

C Condenser Template	Evaporation	or Template	C Water Coil Template
ulation Results			
Click "Print Results" to print the results. Double of	lick a cell to edit it.		
Customer			
Date			
Project			
	0	OIL SIDE	
Fin Type	Louver	Utilized Tubes	9
Fin Material	Aluminum	Non Utilized Tubes	31
Fin Spacing [mm]	1.80	Circuits	1
Fin Thinkness [mm]	0.105	Tubes Per Circuit	9.00
Tube Type	Grooved	Coil Length [mm]	500.00
Tube Material	Copper	Coil Depth [mm]	25.40
Tube Dimension [mm]	7.00*0.28*0.10	Coil Height [mm]	420.00
Holes	20	Outer Area [m2]	1.227
Rows	2	Inner Area [m2]	0.091
Tube Vertical Space [mm]	21.00	Coil Face Area [m2]	0.21
Tube Horizontal Space [mm]	12.70	Inner Volume [L]	0.147
Distributor [mm]	9.5	Header Out [mm]	9.5
AIR SIDE			REFRIGERANT SIDE
Air Inlet DB. Temp. [°C]	27.0	Refrigerant	R410A
Relative Humidity %	47.0	Evaporator Temp.[°C]	7.007
Air Outlet DB. Temp. [°C]	23.4	Superheating [°C]	0.000
Relative Humidity %	54.9	Quality / Mass Fraction	0.188
Air Flow [m3/h]	749.6	Mass Flow [kg/h]	36.0
Air Mass Flow [kg/h]	962.8	Coil Pressure Drop [kPa]	7.877
Frontal Velocity [m/s]	1.0	Outlet Pressure [kPa]	989.588
Air Pressure Drop [Pa]	4.1	Ref. Charge [kg]	0.03
Atmospheric Pressure [kPa]	101.3	Ref. Side H.T.C. [W/m2*K]	5623.211
Air Side H.T.C. [W/m2*K]	118.963		

eneral results				:
Heat Exchange	4940.223	w		Print
Refr Pressure Drop	43.025	kDa		
	35.8	KFa		Save As CSV
A	0.622	Pa	h rof	4796 565 000000
A_ret	0.022	m2	h Orah	4730.303 W/m2K
Q_2pn	0.000	W	n_2pn	0.000 W/m2K
Q_1	-4936.193	W	h_l	4796.565 W/m2k
Q_g	0.000	W	h_g	0.000 W/m2K
-Refrigerant of inlet-				
Pressure	600.000 kPa	Tempe	rature	7.000 C
Enthalpy	30.080 kJ/kg	Mass C	Juality	-0.311
Subcooling	154.481 C	Mass	Flow Rat	e 219.722 g/s
Definement of outlot				,
Pressure	556 975 kPa	Tempe	erature	12 368 C
Entholpu	E2 E60 k l/kg	Macel	Quality	-0.292
	145.000 KJ/Kg	11000	aaaaaay	-0.232
Subcooling	145.090 C			
Block1				
Heat Capacity		4936.176	W	
Air flow rate	, 	680.219	m3/h	
Heat transfer area	, 	8.437	m2	
Heat transfer coeffic	ient	95.199	W/m2k	Details
Air of inlet	1			
	C Twb	19.530 (C Pres	sure 101.300 kPa
Tdb 27.000				
Air of outlet				

<

Simulation Results

✓ Simulation results of path

🗖 Rest	ult in	all c	ontrol v	olumes in pa	th-refrigerant		
Lile I	ten Help						
Save	As CSV Fi	les	frigerant	t weight 10	.636 g Heat exch	nange 152.605 ¥	
Erint	Erint Table		Column	Contrl	Tenperatur (In)	Tenperature (Dut)	2
Close				vordme		(0)	
1	1	1	1	3	-39.09	-39.10	
1	1	1	1	2	-39.10	-39.10	
1	1	1	1	1	-39.10	-39.11	
12	1	2	1	1	-39.16	-39.17	
12	1	2	1	2	-39.17	-39.18	
12	1	2	1	3	-39.18	-39.18	
2	1	1	2	3	-39.24	-39.25	
2	1	1	2	2	-39.25	-39.25	
2	1	1	2	1	-39.25	-39.25	
13	1	2	2	1	-39.32	-39.32	
13	1	2	2	2	-39.32	-39.33	
13	1	2	2	3	-39.33	-39.34	
3	1	1	3	3	-39.40	-39. 41	
<							> ,

Thank you

For more information, please contact

kerry.song@copperalliance.org